

Updated estimation of forest biomass carbon pools in 1

China, 1977-2018 2

- Chen Yang¹, Wenjuan Sun^{2,3}, Jiangling Zhu¹, Chengjun Ji¹, Yuhao Feng¹, Suhui Ma¹, 3
- Yue Shi², Zhaodi Guo⁴, Jingyun Fang^{1,*} 4
- 5 6 ¹Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth
- Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
- 7 ²State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy
- 8 of Sciences, Beijing, China
- 9 ³University of Chinese Academy of Sciences, Beijing, China
- 10 ⁴National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
- 11 Correspondence to: Jingyun Fang (jyfang@urban.pku.edu.cn)

12

13	Abstract. China is the largest reforestation country in the world and the accurate estimation of its forest
14	biomass carbon (C) pool is critical for evaluating the country's C budget and ecosystem services of
15	forests. Although several studies have estimated China's forest biomass using national forest inventory
16	data, most of them were limited to the period of 2004–2008. In this study, we extended our estimation to
17	the most recent period of 2014-2018. Using datasets of eight inventory periods from 1977 to 2018 and
18	the continuous biomass expansion factor method, we estimated that the total biomass C pool and average
19	biomass C density of Chinese forests increased from 4717 Tg C (1 Tg = 10^{12} g) in the period of 1977–
20	1981 to 7975 Tg C in the period of 2014–2018 and 38.2 Mg C ha ⁻¹ to 45.8 Mg C ha ⁻¹ (1 Mg = 10^{6} g),
21	respectively, with a net increase of 3258 Tg C and an annual sink of 88.0 Tg C year $^{-1}$. Over the recent 10
22	years (2009–2018) the averaged national biomass C density and C sink showed a respective increase of
23	5.0 Mg C ha ⁻¹ and 91.5 Tg C year ⁻¹ much larger than those of 39.6 Mg C ha ⁻¹ and 63.3 Tg C year ⁻¹ in the
24	period of 1977-2008. These pronouncing increases were largely attributed to afforestation practices,
25	forest age growth, and environmental changes. Our results have documented the importance of ecological
26	restoration practices and provided an essential basis for assessing ecosystem services and achieving
27	Chinas C neu trality target.
28	Keywords: Forest biomass; C sink; C density; China; ecological restoration projects

29

30 1. Introduction

31	Terrestrial ecosystems absorb approximately 30% of annual anthropogenic CO2 emissions (Terrer
32	et al., 2021). Forests, covering ~30% of the global land area (Fahey et al., 2010; Guo et al., 2013), play
33	fundamental roles in global C balance and mitigating climate change (Pan et al., 2011; Harris et al., 2021).
34	Globally, forests sequester large amounts of C in woody biomass and soils (Pugh et al., 2019). Thus, even
35	small changes in the forest C pool should be considered profound feedback on climate change (He, 2012).
36	Forest area in China ranks fifth globally, accounting for 5.51% of global total (National Forestry and
37	Grasslands Administration, 2019). China's diverse climate conditions and forest types are unique for
38	forest carbon cycle research (Fang et al., 2010). China's forests are generally young with low C density
39	and have large areal proportion of afforestation and reforestation, implying great potential for C
40	sequestration in the future (Xu et al., 2010; Zhao et al., 2019). Since the 1990s, numerous studies have
41	investigated China's forest resources, C storage, and C sinks; however, most were limited to the period
42	of 2004–2008 (e.g. Fang et al., 1996, 2001, 2007; Fang & Chen, 2001; Xu et al., 2010; Guo et al., 2013;
43	Zhang et al., 2013; Li et al., 2015; Zhang et al., 2015). In these studies, the estimated C sinks of Chinas
44	forest differed considerably among their dedicated periods, ranging from 21 to 99.1 Tg C year ⁻¹ (Fang et
45	al., 2001; Guo et al., 2013; Zhao et al., 2019). The differences might be attributed to the diverse methods
46	utilise and data inconsistency. There are no consistent, comprehensive comparison studies available
47	including forest census data after 2013 (the 8th National Forest Inventory) combined with previous
48	nationwide survey data. Therefore, a continuously updated estimation of China's forest C pools and
49	magnitudes of C sequestration will be of great importance.
50	In 2020, the Chinese government announced its promise for achieving carbon neutrality target by
51	2060. Sequestrating more C through afforestation, reforestation, and optimal forest management is the
52	most important components of nature-based solutions to global warming mitigation, and have been an
53	essential part of China's commitment (Yu et al., 2021). Accurately updating estimates of the forest
54	biomass C pool and sink capacity are also crucial for Chinas aim of reducing greenhouse gas emissions
55	(Xu et al., 2010) and in reaching national carbon neutrality.
56	Mean biomass density, biomass expansion factor (BEF), and remote sensing are three common
57	methods for estimating large spatial-scale forest biomass carbon stocks (Guo et al., 2010; Zhang et al.,
58	2013). Among these methods, the BEF method is considered the most reliable method for large-scale
59	biomass C estimation (Fang et al., 1998; Fang & Wang, 2001; Guo et al., 2010; Zhang et al., 2021).
60	Therefore, we used the BEF method to calculate forest biomass using eight national forest inventories
61	compiled during the period 1977-2018. We specially focus on the changes in biomass C stocks in the

62 most recent decade (the period of 2009–2018) and compared them with those in the earlier 30 years

63 (1977 to 2008) to fill in the knowledge gaps in this decade.

64 2. Methods

65 2.1 Data sources

66 Eight national forest inventory datasets compiled by the Chinese Ministry of Forestry 67 Administration from 1977 to 2018 were used in this study. Forest (the dominant tree species of the forest 68 groups) area, timber volume, forest age, and type were reported for all provinces. According to Fang 69 (2000), five zonal forest types including cold-temperate coniferous, temperate coniferous, temperate 70 deciduous broad-leaved, temperate/subtropical mixed, and evergreen broad-leaved are dominate tree 71 species. To quantify age-related tree growth, forests were further divided into five sub-groups: young, 72 middle-aged, pre-mature, mature, and over-mature. Forest area and C stocks were calculated for each 73 province. Chongqing municipality, which was separated from Sichuan province in 1997, was merged 74 into Sichuan here. The detailed data of Taiwan, Hong Kong, and Macau are missing from the inventory 75 datasets; thus, the calculations did not account for these three regions.

76 2.2 Data correction

In the early national forest inventory, the criterion of forest classification was set by the crown
density at 0.3. It was revised to 0.2 in 1994. We unified the criterion by adopting the power functions
(Eqs. (1) and (2)) provided by Guo et al. (2013):

$$80 \qquad AREA_{0,2} = 1.290 \times AREA_{0,3}^{0.995} \ (R^2 = 0.996) \tag{1}$$

81
$$CARBON_{0.2}=1.147 \times CARBON_{0.3}^{0.996} (R^2=0.996)$$
 (2)

where $AREA_{0.2}$ and $AREA_{0.3}$ are the forest areas (10⁴ ha) with a crown density of 0.2 and 0.3, respectively, and $CARBON_{0.2}$ and $CARBON_{0.3}$ are the biomass C pools (Tg C) with a crown density of 0.2 and 0.3, respectively.

85 2.3 Statistical analysis

Fang et al. (2001) used the first-order derivative formula to calculate BEF using ground survey data of forest volume [Eq. (3) and (4)]. This approach enabled upscaling estimates from field plots to a regional level. The stock volume density was calculated according to area and stock volume of each forest type and age group in each province, and then BEF was used to calculate biomass:

90 BEF=*a*+*b*/*x*

 $v = \mathbf{REE} \cdot V$

91

(4)

1	y bh , (1)
92	where x, V are the stock volume and stock volume density of a forest type at a certain age, and a and b
93	are BEF function coefficients. BEF is the biomass expansion factor, and y is the biomass of a forest type
94	at a certain age. BEF coefficients in Eq.(3) were retrieved from previous studies (Fang et al., 1998, 2002;
95	Fang & Wang, 2001) (Table A1). A constant C conversion factor of 0.5 was used to convert biomass into
96	C (Fang et al., 2001).

97 3 Results

98 3.1 Forest biomass C pool and its changes

99 The total forest biomass C stock, averaged biomass C density, and the biomass C sink during 1977-100 2008 were 5447 Tg C, 39.6 Mg C ha⁻¹, and 63.3 Tg C year⁻¹, respectively (Table 1). The corresponding 101 values were 7525 Tg C, 44.6 Mg C ha⁻¹, and 154.8 Tg C year⁻¹, respectively, during 2009-2018, making 102 an increase C sink of 91.5 Tg C year-1 (Table 1). Compared with the forest biomass C pool during 1977-103 1981, it increased by 3258 Tg C (69.1%) during 2014-2018. In general, the C density of forest biomass 104 increased by 7.61 Mg C ha⁻¹ (19.9%) during 1977–2018 (Table 1, Figure 1). It should be noted that the 105 forest area increased by 41.0% from 1.24×10⁸ ha during 1977-1981 to 1.74×10⁸ ha during 2014-2018 106 (Table 1). Accelerated expansion of area through afforestation and reforestation may lead to a large C 107 sink of 180.2 Tg C year⁻¹ in 2014–2018 (Table 1, Figure 1). In addition, the forest biomass C pool varied 108 considerably across the different periods. It was found to have decreased by 2.9 Tg C year-1 over 1994-109 1998, which was thought to have been due to the decrease in area of natural forest from 1994–1998. 110 The biomass C pools of planted forests and natural forests increased significantly during the study 111 (Table 2). The biomass C pool of planted forest increased from 250 Tg C during 1977-1981 to 1470 Tg 112 C in 2014–2018. This indicated that biomass C sinks had an average of 33.0 Tg C year⁻¹. The biomass C 113 density of planted forests increased from 15.6 Mg C ha⁻¹ during 1977-1981 to 28.3 Mg C ha⁻¹ during 114 2014–2018. For natural forests, the biomass C pool increased in most timesteps during the study periods. 115 Especially in the past 10 years, the biomass C sink of natural forest has grown rapidly, indicating 100.8 116 Tg C year-1 during 2009–2013 and 128.1 Tg C year-1 during 2014–2018 (Table 2). From 1977 to 2018, 117 the increase in biomass C pool of natural forests was 2037 Tg C, indicating C sinks of 55.1 Tg C year-1

118 on average.

119	Table 1	Forest area,	biomass (C pool, C	density, a	and C	sinks from	1977 to 2018
-----	---------	--------------	-----------	-----------	------------	-------	------------	--------------

Devied			Forest parameter	
Period	Area (10^4 ha)	C pool (Tg C)	C density (Mg C ha ⁻¹)	C sink (Tg C year ⁻¹)
1977–1981	12350	4717	38.2	
1984–1988	13169	4885	37.1	23.9
1989–1993	13971	5402	38.7	103.5
1994–1998	13241	5388	40.7	-2.9
1999–2003	14279	5862	41.1	94.9
2004-2008	15559	6427	41.3	112.9
Average				
1977-2008	13762	5447	39.6	63.3
2009–2013	16349	7074	43.3	129.4
2014-2018	17409	7975	45.8	180.2
Average				
2009-2018	16879	7525	44.6	154.8
Overall change				
1977-2018	5059	3258	7.61	88.0

120

121 Figure 1 Changes in the area, biomass C pool, and C density of forests from 1977 to 2018. The pink

122 box highlights the most recent results from the last ten years.

- 123
- 124

	Planted forest				Natural forest			
Period	Area	СР	CD	CS	Area	СР	CD	CS
_	10^4 ha	Tg C	Mg C ha ⁻¹	Tg C year ⁻¹	10^4 ha	Tg C	Mg C ha ⁻¹	Tg C year ⁻¹
1977–1981	1595	250	15.6		10755	4468	41.5	
1984–1988	2347	418	17.8	24.1	10822	4467	41.3	-0.1
1989–1993	2675	526	19.7	21.6	11296	4876	43.2	81.9
1994–1998	2914	642	22.0	23.3	10326	4746	46.0	-26.2
1999–2003	3229	836	25.9	38.7	11049	5026	45.5	56.2
2004–2008	4000	1067	26.7	46.2	11559	5360	46.4	66.7
2009–2013	4665	1183	25.4	23.3	11685	5864	50.2	100.8
2014-2018	5193	1470	28.3	57.3	12212	6505	53.3	128.1
1977-2018				33.0				55.1

125 Table 2 Area, biomass C pool (CP), C density (CD), and C sinks (CS) of planted and natural forests

126 **3.2** Changes of biomass C pools in different zonal forest types

127 Compared with during1977–2008, areas of temperate coniferous forest, temperate deciduous broad-

128 leaved forest and evergreen broad-leaved forest increased during 2009-2018. With the exception of the 129 temperate deciduous broad-leaved forest, C sinks of four of the five forest types increased in the past 10 130 years (2009-2018) in comparison to 1977-2008 (Table 3). Particularly, the biomass C sink of evergreen 131 broad-leaved forests during 2009-2018 was 84.6 Tg C year⁻¹, which is much higher than the average C 132 sink for the previous 30 years (22.8 Tg C year⁻¹, 1977–2008). For more details about the area, C pool, C 133 density and C sinks between 1977 and 2018, please refer to Table A2. There was an increase in area, 134 biomass C density, with the biomass C pool remaining the same from 2009 to 2018. The C pool of the 135 evergreen broad-leaved forest reached 2747 Tg C during 2014-2018 (Table 3, Table A2). Overall changes 136 in the biomass C pools from 1977 to 2018 indicated that, with the exception of cold-temperate coniferous 137 forests, the biomass C pools of four out of the five forest types all increased. The largest increase took 138 place in the evergreen broad-leaved forest (1463 Tg C), which had an average annual C sink of 39.5 Tg 139 C year⁻¹ (Table A2).

140 Table 3 Area, biomass C pool (CP), C density (CD), and average C sinks (CS) of different zonal forest

51	1	1	5		
Zonal forest trimes	Donio da	Area	СР	CD	CS
Zonai lorest types	Perious	10^4 ha	Tg C	Mg C ha ⁻¹	Tg C year-1
Cold-temperate	1977-2008	2080	1461	70.2	-8.2
coniferous forest	2009-2018	1844	1321	71.6	11.3
Temperate coniferous	1977-2008	1125	381	33.9	9.9
forest	2009-2018	1740	652	37.5	13.7
Temperate deciduous	1977-2008	3614	1430	39.6	26.2
broad-leaved forest	2009-2018	3714	1730	46.6	19.5
Temperate/subtropical	1977-2008	3989	975	24.4	12.6
mixed forest	2009-2018	3834	1308	34.1	25.7
Evergreen broad-leaved	1977-2008	2953	1200	40.7	22.8
forest	2009-2018	5748	2515	43.7	84.6

141 types in the recent decade compared to the previous 30 years*

142 * The average C sink for the previous 30years was calculated by dividing the difference between

143 the 2004–2008 and 1977–1981 C pools by 27. The average C sink over the recent decade was calculated

144 by dividing the difference between the 2014–2018 and 2004–2008 C pools by 10.

145 **3.3 Biomass C sequestration in different forest age groups**

146 In the original national forest inventory, only three age groups were recognised, namely young 147 forests, middle-age forests, and old-age forests. In the subsequent inventories, forests were categorised 148 into five different age groups. These were young, middle-age, pre-mature, mature, and over-mature 149 forests. To ensure a consistent temporal comparison, the old growth forests from the first inventory were 150 reclassified into pre-mature, mature, and over-mature forest groups. 151 The growth rate by area and C pool of all forest age groups over the last 10 years (2009–2018) was 152 higher than for the previous 30 years (1977-2008). In addition, forest area and C pool for each age group 153 reached the highest level recorded during 2014-2018. The area and C pool of old-aged forests were both 154 the largest, at 6.33×10⁷ ha and 4387 Tg C, respectively (Figure 2). The area of young, middle-aged, and 155 old-aged forests increased from 1977 to 2018 by 1.47×107 ha, 1.08×107 ha, and 2.51×107 ha, respectively. 156 Meanwhile, C pools increased by 657 Tg C, 791 Tg C, and 1810 Tg C, respectively. The biomass C 157 densities of young, middle-aged, and old-aged forests increased by 7.9, 7.5, and 1.9 Mg C ha⁻¹,

158 respectively.

160 Figure 2 Changes in area (a), C pool (b) and C density of forest for each age group from 1977 to 2018.

161 The pink box highlights the latest results from the last ten years.

162 4 Discussion

163	National forest inventories provide the most comprehensive spatial and temporal datasets for
164	investigating forest change. Using data from eight forest inventories, this study provides an update on
165	Chinas estimated forest biomass C, as well as obtaining the country 's forest biomass C pool and how it
166	has varied over the last 40 years (1977-2018). This includes the most recent forest inventory period of
167	2014–2018. The estimated biomass C pool in this study is similar to the results reported by Zhang et al.
168	(2015) and Zhao et al. (2021), lower than those by Fang et al. (2007), and higher than those by Zhang et
169	al. (2021). Fang et al. (2007) determined a forest biomass C sink of 75.2 Tg C year-1 from 1977 to 2003,
170	which is higher than the results found by this study (52.0 Tg C year ⁻¹). This could be due to the linear
171	relationship in the conversion process of crown density from 0.3 to 0.2 by Fang et al. (2007), but in this
172	study the power functions (Eqs. (1) and (2)) relationship conversion were adopted. Zhang et al. (2021)
173	did not use a unified standard for crown density (1977-1993), instead using data with crown density
174	greater than or equal to 0.3, lowering the C pool results during the same period.
175	Results from the current study revealed that the latest forest biomass C pool (7975 Tg C, 2014-
176	2018) was much larger than 4717 Tg C from 1977–1981, with an increase of 3258 Tg C (69.1%), and
177	accordingly, the C sink averaged 88.0 Tg C year $^{\text{-}1}$. Since the late 1970s, China has launched six key
178	national ecological restoration projects, including the Three-North Shelter Forest Program which
179	initiative aims to protect the country's environment, as well as to restore degraded ecosystems (Lu et al.,
180	2018). Through large-scale afforestation and reforestation projects, China now has the largest planted
181	forest area in the world (Guo et al., 2013; Lu et al., 2018), which contributed 71.2% of total forest area
182	expansion in China from 1977 to 2018 (Table 2). On the one hand, with these ecological restoration
183	projects, management practices including forest enclosure, tending, and reduction of timber harvesting,
184	have promoted the growth of natural forests (Xu et al., 2017; Fang et al., 2018; Lu et al., 2018). As a
185	result, the area and biomass C pool of natural forests has increased greatly from 1.08 $\times 10^8$ ha and 4,468
186	Tg C during 1977–1981 to 1.22×10^8 ha and 6,505 Tg C during 2014–2018, respectively. Moreover, the
187	natural forest resource protection projects have prevented C loss from the vegetation and subsequently
188	enhanced C stocks sinks, as well as allowing the area and biomass C pool of natural forests to increase
189	(Xu et al., 2010; Fang et al., 2014a).

190	On the other hand, large-scale plantation projects since the 1970s (Guo et al., 2013) have resulted
191	in extensive forests reaching maturity. From 1977 to 2018, the area of middle- and old-age forests, and
192	biomass C density of young and middle-aged forests has increased. Meaning, a large area of immature
193	forest has there converted to reach the next age level for each period. The increase in biomass C density
194	is an important factor for the growth of biomass C pools (Fang et al., 2014a). It is worth noting that
195	biomass C density of old-aged forests has gradually stabilised over the last 10 years (2009-2018) (Figure
196	2). In addition to the death of trees due to natural disasters, the main reason for this decline may be the
197	implementation of deforestation measures in old-aged forests. According to the 'Forest Law of the
198	Peoples Republic of China ', mature forests are subject to reforestation after selective controlled selective
199	cutting, thinning, and clearing of trees (Zhao et al., 2021). Several studies (Nabuurs et al., 2013; Coulstion
200	et al., 2015; Harel et al., 2021) have found that ageing forests have a slowing C accumulation rate and a
201	reduced change of C accumulation. Therefore, selective clearing and reforestation are more profitable
202	for ways of improving levels of forest C sequestration (Nabuurs et al., 2013; Zhao et al., 2021).
203	In compared to the previous 30 years from 1977-2008, total forest area, biomass C stock, and
204	averaged biomass C density increased tremendously in the last 10 years from 2009-2018, especially for
205	C stock and C density. The C sink was 154.8 Tg C year-1 over the last 10 years, which was much higher
206	than that of 63.3 Tg C year ⁻¹ during the previous 30 years. With a slowing down growth rate of forest

area (Figure 1, Table 1), the increase in C density by the ongoing afforestation projects and forest growth
has been an important driving factor for the rapid increase in C pool over the last decade from 2009–
2018 (Zhao et al., 2021). The huge C sinks brought about by large-area forests with increased biomass C

210 density should be an important source of power for Chinas forest C sinks after 2010 (Yu et al., 2021).

Historical environmental changes may be another important reason for promoting Chinas forest growth over the last decade. Owing to the use of fossil fuels and other human activities over the past few decades, China has experienced continuous increases in atmospheric CO₂ concentration and significant warming (Wei et al., 2009; Piao et al., 2010; Tian et al., 2011). From 1977 to 2018, the average annual change (2.29 ppm) in CO₂ concentration in China over the last ten years (2009–2018) is greater than that for the previous 30 years (1977–2008) (1.68 ppm; Global Montitoring Laboratory, https://www.gml.noaa.gov/). Elevated CO₂ concentrations strengthen C fertilisation in trees (Beedlow et

- 218 al., 2004; Norby et al., 2005; Piao et al., 2009; Tian et al., 2011), which was one of the most important 219 factors driving the long-term C sink in China (Pan et al., 2011). In addition, average annual temperatures 220 for Chinese forest areas (11.3°C) over the last 10 years (2009–2018) were higher than those (10.8°C) 221 from the previous 30 years (1977-2008; China Meteorological Data Service Center, 222 https://data.cma.cn/data/index.html). The warming climate promotes biomass C accumulation both by 223 accelerating photosynthesis and elongating growing seasons (Zhou et al., 2001; Piao et al., 2006; Fang 224 et al., 2014b). This may also lead to an increase in the forest biomass C pool in China. In summary, 225 expansion of Chinas forests (increasing area), forest growth (increasing C density), and environmental 226 changes have contributed to the promotion of C sinks, particularly in recent decade (Fang et al., 2014a, 227 b; Li et al., 2016; Zhao et al., 2019; Zhao et al., 2021). 228 The estimation involved in the study are presented with some uncertainties. In general, the national
- 229 forest inventory data were assumed to have small errors of less than 5% (Fang et al., 2001). Survey 230 accuracy of the forest area and timber volume was over 90% (National Forestry and Grasslands 231 Administration, 2019). The method used to calculate biomass from surveyed stand volume data, and the 232 R^2 of the BEF function (Eq. (3) and (4)) of the dominant tree species was higher than 0.80 (Table A1), 233 suggesting our estimates of forest biomass were statistically reliable. Previous studies have shown 234 estimate error of forest biomass at national scale using the BEF function are not likely to exceed 3% 235 (Fang & Chen, 2001; Fang et al., 1996, 2002). Despite these uncertainties, the results of this study provide 236 relatively high accuracy and a comprehensive assessment of the forest C budget.

237 5 Conclusion

In this study, we estimated forest biomass C storage and its changes in China over the past 40 years (1977–2018) and especially updated their estimates in the most recent decade (2009–2018), using the biomass expansion factor method and eight national forest inventories conducted every five years. We concluded that Chinese forest biomass C pool increased by 3258 Tg C with an annual C sink of 88.0 Tg C year⁻¹ from 1977 to 2018. The biomass C pool and C sink in the last 10 years (7525 Tg C and 154.8 Tg C year⁻¹, 2009–2018) were much higher than those of the previous 30 years (5447 Tg C and 63.3 Tg C year⁻¹, 1977–2008), although the C sink strength displayed large variations in different periods.

- 245 Expansion of forest area, forest growth, and environmental changes were proposed as the main drivers
- 246 of this significant C increase especially in the recent decade. Our study updates the previous estimates of
- 247 Chinas forest C storage and its changes and provides an essential basis for policy -making for ecosystem
- 248 services and the carbon neutrality target in China.

249 Author contribution

- 250 JY Fang and C Yang designed the study and conducted the analysis, C Yang analysed the data and
- 251 wrote the first draft, ZD Guo provided part of datasets, WJ Sun, JL Zhu, CJ J, YH Feng, SH Ma, Y Shi,
- and JY Fang revised the manuscript and gave final approval for publication.

253 Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

256 Acknowledgements

- 257 This study was funded by the National Natural Science Foundation of China (31988102 and
- 258 41871038). We also thank the National Forestry and Grass Administration for the data support.
- 259

260 References

- 261 Beedlow, P. A., Tingey, D. T., Phillips, D. L., Hogsett, W. E. and Olszyk, D. M.: Rising atmospheric CO₂
- and carbon sequestration in forests, Front. Ecol. Environ., 2, 315–322, 2004.
- 263 Coulston, J. W., Wear, D. N. and Vose, J. M.: Complex forest dynamics indicate potential for slowing
- carbon accumulation in the southeastern United States, Sci. Rep., 5, 8002, 2015.
- 265 Fahey, T. J., Woodbury, P. B., Battles, J. J., Goodale, C. L., Hamburg, S. P., Ollinger, S. V. and Woodall,
- 266 C. W.: Forest carbon storage: ecology, management, and policy, Front. Ecol. Environ., 8, 245–252,
- 267 2010.
- 268 Fang, J. and Chen, A.: Dynamic forest biomass carbon pools in China and their significance, Acta Bot.
- 269 Sin., 43, 967–973, 2001.
- 270 Fang, J., Chen, A., Peng, C., Zhao, S. and Ci, L.: Changes in forest biomass carbon storage in China
- 271 between 1949 and 1998, Science, 292, 2320–2322, 2001.
- 272 Fang, J., Chen, A., Zhao, S. and Ci, L.: Estimating biomass carbon of China's forest: supplementary
- notes on report published in science (291: 2320–2322) by Fang et al. 2001, Acta Phytoecologica
 Sinica. 26, 243–249, 2002.
- 275 Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H. and Song, Y.: Forest biomass carbon sinks in East Asia,
- 276 with special reference to the relative contributions of forest expansion and forest growth, Glob.
- 277 Change Biol., 20, 2019–2030, 2014a.
- 278 Fang, J., Guo, Z., Piao, S. and Chen, A.: Terrestrial vegetation carbon sinks in China, 1981–2000, Sci.
- 279 China Ser. D-Earth Sci., 50, 1341–1350, 2007.
- 280 Fang, J., Kao, T., Guo, Z., Yang, Y., Hu, H., Shen, H., Zhao, X., Kishimoto-Mo, A. W., Tang, Y. and
- 281 Houghton, R. A.: Evidence for environmentally enhanced forest growth, Proc. Natl. Acad. Sci. U.
- 282 S. A., 111, 9527–9532, 2014b.
- 283 Fang, J., Liu, G. and Xu, S.: Biomass and net production of forest vegetation in China, Acta Ecologica
- 284 Sinica, 16, 497–508, 1996.
- 285 Fang, J.: Forest productivity in China and its response to global climate change, Acta Phytoecologica
- 286 Sinica, 24, 513–517, 2000.

- 287 Fang, J., Tang, Y. and Yowhan, S.: Carbon cycle research: Why east Asian ecosystems are important, Sci.
- 288 China-Life Sci., 40, 561–565, 2010.
- 289 Fang, J., Wang, G., Liu, G. and Xu, S.: Forest biomass of China: An estimate based on the biomass-
- 290 volume relationship, Ecol. Appl., 8, 1084–1091, 1998.
- 291 Fang, J. and Wang, Z.: Forest biomass estimation at regional and global levels, with special reference to
- 292 Chinas forest biomass, Ecol. Res., 16, 587–592, 2001.
- 293 Fang, J., Yu, G., Liu, L., Hu, S. and Chapin, F. S.: Climate change, human impacts, and carbon
- 294 sequestration in China, Proc. Natl. Acad. Sci. U. S. A., 115, 4015–4020, 2018.
- 295 Guo, Z., Fang, J., Pan, Y. and Birdsey, R.: Inventory-based estimates of forest biomass carbon stocks in
- 296 China: A comparison of three methods, For. Ecol. Manage., 259, 1225–1231, 2010.
- 297 Guo, Z., Hu, H., Li, P., Li, N. and Fang, J.: Spatio-temporal changes in biomass carbon sinks in China's
- 298 forests during 1977-2008, Sci. China-Life Sci., 43, 421–431, 2013.
- 299 Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen,
- 300 M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi,
- 301 S. S., Slay, C. M., Turubanova, S. A., and Tyukavina, A.: Global maps of twenty-first century forest
- 302 carbon fluxes, Nat. Clim. Chang., 11, 1–7, 2021.
- 303 Harel, A., Evelyne, T. and David, P.: Ageing forests and carbon storage: a case study in boreal balsam fir
- 304 stands, Forestry, 94, 651–663, 2021.
- 305 He, J.: Carbon cycling of Chinese forests: From carbon storage, dynamics to models, Sci. China-Life
- 306 Sci., 42, 252–254, 2012.
- 307 Li, P., Zhu, J., Hu, H., Guo, Z., Pan, Y., Birdsey, R. and Fang. J.: The relative contributions of forest
- 308 growth and areal expansion to forest biomass carbon, Biogeosciences, 13, 375–388, 2016
- 309 Li, Y., Xu, X. and Zhang, C.: Study on dynamics of arboreal forest carbon storage in China, Forest
- 310 Engineering, 31, 50–55, 10.16270/j.cnki.slgc.2015.04.012, 2015.
- 311 Lu, F. Hu, H., Sun, W., Zhu, J., Liu, G., Zhou, W., Zhang, Q., Shi, P., Liu, X., Wu, X., Zhang, L., Wei,
- 312 X., Dai, L., Zhang, K., Sun, Y., Xue, S., Zhang, W., Xiong, D., Deng, L., Liu, B., Zhou, L., Zhang,
- 313 C., Zheng, X., Cao, J., Huang, Y., He, N., Zhou, G., Bai, Y., Xie, Z., Tang, Z., Wu, B., Fang, J., Liu,

- 314 G. and Yu, G.: Effects of national ecological restoration projects on carbon sequestration in China
- 315 from 2001 to 2010, Proc. Natl. Acad. Sci. U. S. A., 115, 4039–4044, 2018.
- 316 Nabuurs, G. J., Lindner, M., Verkerk, P. J., Gunia, K., Deda, P., Michalak, R. and Grassi, G.: First signs
- 317 of carbon sink saturation in European forest biomass, Nature Climate Change, 3, 792–796, 2013.
- 318 National Forestry and Grasslands Administration: China Forest Resources Report, 2014–2018, China
- 319 Forestry Publishing House, Beijing, 2019.
- 320 Norby, R. J., De Lucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J.,
- 321 McCarthy, H. R., Moore, D. J. P., Ceulemans, R., De Angelis, P., Finzi, A. C., Schlesinger, W. H.,
- 322 Oren, R.: Forest response to elevated CO₂ is conserved across a broad range of productivity, Proc.
- 323 Natl. Acad. Sci. U. S. A., 102, 18052–18056, 2005.
- 324 Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A.,
- 225 Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S.,
- 326 Rautiainen, A., Sitch, S. and Hayes, D.: A Large and Persistent Carbon Sink in the Worlds Forests,
- 327 Science, 333, 988–993, 2011
- 328 Piao, S., Ciais, P., Friedlingstein, P., de Noblet-Ducoudre, Cadule, P., Viovy, N. and Wang, T.:
- 329 Spatiotemporal patterns of terrestrial carbon cycle during the 20th century, Glob. Biogeochem.
- 330 Cycle, 23, GB4026, 2009.
- 331 Piao, S., Ciais, P., Huang, Y., Shen Z., Peng, S., Li, J, Zhou, L., Liu, H., Ma, Y., Ding, Y., Friedlingstein,
- 332 P., Liu, C., Tan, K., Yu, Y., Zhang, T. and Fang, J.: The impacts of climate change on water resources
- and agriculture in China, Nature, 467, 43–51, 2010.
- 334 Piao, S., Fang, J., Zhou, L., Ciais, P. and Zhu, B.: Variations in satellite-derived phenology in China's
- temperate vegetation, Glob. Change Biol., 12, 672–685, 2006.
- 336 Post, W. M., Emanuel, W. R., Zinke, P. J. and Stangenberger, A. G.: Soil carbon pools and world life
- 337 zones, Nature, 298, 156–159, 1982.
- 338 Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V. and Calle, L.: Role of forest
- regrowth in global carbon sink dynamics, Proc. Natl. Acad. Sci. U. S. A., 116, 4382–4387, 2019.
- 340 Terrer, C. Phillips, R, P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van Groenigen, K. J.,
- 341 Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang,

- 342 H., Evans, R. D., Carrillo, Y., Fisher, J. B., van Sundert, K., Vicca, S. and Jackson, R. B.: A trade-
- 343 off between plant and soil carbon storage under elevated CO₂, Nature, 591, 599–603, 2021.
- 344 Tian, H, Melillo, J., Lu, C., Kicklighter, D., Liu, M., Ren, W., Xu, X., Chen, G., Zhang, C., Pan, S., Liu,
- 345 J. and Running, S.: Chinas terrestrial carbon balance: Contributions from multiple global change
- factors, Glob. Biogeochem. Cycle, 25, GB1007, 2011.
- 347 Wei, K. and Chen, W.: Climatology and trends of high temperature extremes across China in summer,
- 348 Atmos. Ocean. Sci. Lett., 2, 153–158, 2009.
- 349 Xu, B., Guo, Z., Piao, S. and Fang, J.: Biomass carbon stocks in China's forests between 2000 and 2050:

a prediction based on forest biomass-age relationships, Sci. China-Life Sci., 40, 587, 2010.

- 351 Xu, W., Xiao, Y., Zhang, J., Yang, W., Zhang, L., Hull, V., Wang, Z., Zheng, H., Liu, J., Polasky, S., Jiang,
- 352 L., Xiao, Y., Shi, X. and Rao, E.: Strengthening protected areas for biodiversity and ecosystem
- 353 services in China, Proc. Natl. Acad. Sci. U. S. A., 114, 1601–1606, 2017.
- 354 Yu, Z., You, W., Agathokleous, E., Zhou, G. Y. and Liu, S. R.: Forest management required for consistent
- 355 carbon sink in China's forest plantations, For. Ecosyst., 8, 54, 2021.
- 356 Zhang, C., Ju, W., Chen, J., Wang, X., Yang, L. and Zeng, G.: Disturbance-induced reduction of biomass
- 357 carbon sinks of Chinas forests in recent years, Environ. Res. Lett., 10, 11, 2015.
- 358 Zhang, C., Ju, W., Chen, J., Zan, M., Li, D., Zhou, Y. and Wang, X.: Chinas forest biomass carbon sink
- 359 based on seven inventories from 1973 to 2008, Clim. Change, 118, 933–948, 2013.
- 360 Zhang, Y., Wang, X., Pu, Y. and Zhang, J.: Changes in forest resource carbon storage in China between
- 361 1949 and 2018, Journal of Beijing Forestry University, 43, 1–14, 2021.
- 362 Zhao, M, Yang, J., Zhao, N., Liu, Y., Wang, Y., Wilson, J. and Yue, T.: Estimation of Chinas forest stand
- 363 biomass carbon sequestration based on the continuous biomass expansion factor model and seven
- 364 forest inventories from 1977 to 2013, For. Ecol. Manage., 448, 528–534, 2019.
- 365 Zhao, M., Yang, J., Zhao, N., Liu, Y., Wang, Y., Wilson, J. P. and Yue, T.: Estimation of the relative
- 366 contributions of forest areal expansion and growth to Chinas forest stand biomass carbon
- 367 sequestration from 1977 to 2018, J. Environ. Manage., 300, 113757, 2021.

- 368 Zhou, L., Tucker, C. J., Kaufmann, P. K., Slayback, D., Shabanov, N, V. and Myneni, R. B.: Variations
- 369 in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999,
- 370 J. Geophys. Res.-Atmos., 106, 20069–20083, 2001.
- 371

372 Appendix A

373 Table A1 BEF function parameters of the main forest types in China^a (Guo *et al* 2010)

E	Function paramet				
Forest type	а	b	n	R^2	Р
Picea, Abies	0.5519	48.861	24	0.7764	< 0.001
Cunninghamia lanceolata	0.4652	19.141	90	0.9401	< 0.001
Cupress	0.8893	7.3965	19	0.8711	< 0.001
Larix	0.6096	33.806	34	0.8212	< 0.001
Pinus koraiensis	0.5723	16.489	22	0.9326	< 0.001
P. armandii	0.4581	32.666	10	0.7769	< 0.001
P. massoniana, P. yunnanensis	0.5034	20.547	51	0.8676	< 0.001
P. sylvestris var mongolica	1.112	2.6951	15	0.8478	< 0.001
P.s tabuliformis	0.869	9.1212	112	0.9063	< 0.001
Other pines and coniferous forests	0.5292	25.087	18	0.8622	< 0.001
Tsuga, Cryptomeria, Keteleeria	0.3491	39.816	30	0.7899	< 0.001
Mixed conifer-deciduous forest	0.8136	18.466	10	0.9953	< 0.001
Betula	1.0687	10.237	9	0.7045	< 0.001
Casuarina	0.7441	3.2377	10	0.9549	< 0.001
Deciduous oaks	1.1453	8.547	12	0.9795	< 0.001
Eucalyptus	0.8873	4.5539	20	0.802	< 0.001
Lucidophyllous forests	0.9292	6.494	23	0.8259	< 0.001
Mixed deciduous and Sassafras	0.9788	5.3764	32	0.9333	< 0.001
Nonmerchantable woods	1.1783	5.5585	17	0.9483	< 0.001
Populus	0.4969	26.973	13	0.9183	< 0.001
Tropical forest	0.7975	0.4204	18	0.8715	< 0.001

374 ^a where *a* and *b* are constants for a forest type and *x* (m³ ha⁻¹) is mean timber volume per unit area, the unit of BEF

375 is Mg m⁻³; n is number of samples.

376 Reference

377	Guo, Z. D., Fang, J. Y., Pan, Y. D. and Birdsey, R.: Inventory-based estimates of forest biomass carbon
378	stocks in China: A comparison of three methods, For. Ecol. Manage., 259, 1225–1231, 2010.
379	
380	

381	Table A2 Area, biomass C pool (CP), C density (CD) and C sink (CD) of different a	zonal forest types in
-----	---	-----------------------

382 China

		Area	CP	CD	CS
Zonal forest types	Period	10 ⁴ ha	Tg C	Mg C ha ⁻¹	Tg C year-1
Cold-temperate coniferous forest	1977	2174	1463	67.3	
	1984-1988	2196	1481	67.4	2.6
	1989–1993	2350	1683	71.6	40.4
	1994-1998	2131	1637	76.8	-9.3
	1999–2003	1826	1263	69.2	-74.7
	2004-2008	1805	1242	68.8	-4.3
	2009-2013	1803	1287	71.4	8.9
	2014-2018	1885	1355	71.9	13.8
	1977-2018				-2.9
Temperate coniferous forest	1977	837	284	33.9	
	1984—1988	1055	319	30.3	5.0
	1989–1993	1114	386	34.6	13.3
	1994—1998	1025	335	32.7	-10.2
	1999–2003	1144	410	35.8	15.0
	2004-2008	1573	552	35.1	28.4
	2009-2013	1707	616	36.1	12.9
	2014-2018	1773	689	38.8	14.5
	1977-2018				10.9
Temperate deciduous broad- leaved forest	1977	2425	870	35.9	
	1984—1988	3793	1400	36.9	75.7
	1989–1993	4129	1539	37.3	27.8
	1994—1998	3694	1566	42.4	5.4
	1999–2003	3824	1626	42.5	11.8
	2004-2008	3820	1577	41.3	-9.7
	2009-2013	3838	1687	44.0	22.1
	2014-2018	3590	1772	49.4	17.0
	1977-2018				24.4
Temperate/subtropical mixed forest	1977	3697	816	22.1	
	1984—1988	3459	703	20.3	-16.2
	1989–1993	4158	901	21.7	39.7
	1994—1998	4239	1016	24.0	23.1
	1999–2003	4528	1256	27.7	47.9
	2004-2008	3855	1156	30.0	-20.0
	2009-2013	3720	1203	32.3	9.4
	2014-2018	3948	1413	35.8	42.0
	1977-2018				16.1
Evergreen broad-leaved forest	1977	3217	1284	39.9	
	1984	2666	982	36.8	-43.2

1989-1993	2221	893	40.2	-17.8	
1994—1998	2151	834	38.8	-11.9	
1999–2003	2956	1308	44.3	94.9	
2004-2008	4506	1901	42.2	118.6	
2009-2013	5282	2282	43.2	76.3	
2014-2018	6213	2747	44.2	92.9	
1977-2018				39.5	

383